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Abstract. We extend part of our previous work on autonomous second-order systems 
to time-dependent differential equations. The main subject of the paper concerns the notion 
of adjoint symmetries: they are introduced as a particular type of I-form, whose leading 
coefficients satisfy the adjoint equations of the equations determining symmetry vector 
fields. It is shown that all interesting properties of adjoint symmetries, known from the 
autonomous theory, have their counterparts in the present framework. Of particular interest 
is a result establishing that Lagrangian systems seem to be the only ones for which there 
is a natural duality between symmetries and adjoint symmetries. A number of examples 
illustrate how the construction of adjoint symmetries of a given system can be explored 
in a systematic way. 

1. Introduction 

Some time ago, a paper by Gordon, containing a rather unfamiliar account of Noether’s 
theorem for Lagrangian systems (Gordon 1986), inspired us to explore various ways 
in which a generalisation of this theorem can be conceived for non-Lagrangian systems. 
Noether’s theorem essentially provides a mechanism for generating first integrals and, 
in the traditional picture, the mechanism is triggered by symmetry vector fields of the 
given equations. A generalisation which respects this point of view led us to the 
introduction of the notion of pseudo-symmetries: they constitute a class of vector fields 
which, under appropriate circumstances, can be related to first integrals. In Gordon’s 
account, on the other hand, a predominant role is played by the adjoint equations of 
the linear variational equations of the given system. The generation of conservation 
laws through solutions of the adjoint equations seem to have penetrated the literature 
more in the context of partial differential equations (see, e.g., Gordon 1984, Olver 
1986, Kosmann-Schwarzbach 1985 and Vinogradov 1984). For the particular case of 
second-order ordinary differential equations in normal form, represented by a vector 
field on the tangent bundle of a manifold, there is a very neat geometrical description: 
one can introduce adjoint symmetries as being a particular type of 1-form. We were 
able to explain the correspondence between pseudo-symmetries and such adjoint 
symmetries, thus linking the two different paths for generalising Noether’s theorem. 
All of this, together with other aspects of interest, was discussed in the context of 
autonomous systems in Sarlet et a1 (1987). 
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I t  is now our feeling that adjoint symmetries constitute a more fundamental concept 
than pseudo-symmetries. One of the reasons is that pseudo-symmetries of a second- 
order equation field r are defined with respect to some 1-form belonging to the set 
X F  (introduced in Sarlet et a1 1984), whereas adjoint symmetries do not require any 
prerequisites. The main aim of the present paper is to discuss the related theory for 
time-dependent systems. In accordance with the previous remark, we want to bring 
adjoint symmetries to the forefront in this discussion. We will show that all interesting 
properties of adjoint symmetries of autonomous systems, as established in Sarlet et a1 
(1987), have their counterparts in the present context. A number of examples will be 
worked out in the final section. They will illustrate that the search for adjoint symmetries 
of second-order systems can be organised in a rather systematic way and is a possible 
field for the development of suitable computer algebra routines. The next section 
contains the extension to R x TM (needed later on) of various concepts and properties 
which for the autonomous case (i.e. on T M )  were introduced in Sarlet et a1 (1984). 

2.  Geometrical features o f  time-dependent second-order systems 

The second-order systems of ordinary differential equations under investigation in this 
paper are those which can be written in normal form, say 

q'  = A ' (  1, q, U )  i = 1, .  . . , n. 

Solutions of these equations correspond to integral curves (parametrised by t )  of the 
vector field 

r = a / a t  + U' a /aq '  + A'(  t, 9, U )  a / a u '  

on R x TM. We know from Crampin er a1 (1984) that the type (1, 1) tensor field which 
is to be regarded as the vertical endomorphism on R x TM is given by 

Clearly, second-order equation fields are characterised by the property S(T) = 0. As 
in previous publications, we make no notational distinction between the linear action 
of a type (1, 1) tensor field on the module of vector fields and its dual action on the 
module of 1-forms. The only instance in which this is a little dangerous is when it 
comes to taking the composition of such tensor fields. Thus, for the action on 1-forms, 
we have the properties 

SolY1.S=S lY,.sos=-s 
whereas for the action on vector fields one has to reverse the signs on the right-hand 
sides of these relations. For a discussion of the eigenvalues and eigenspaces of the 
important tensor field 2?,.S, we refer to Crampin et a1 (1984). For our present purposes, 
it suffices to remember that 2?lS(r) = 0 and 

(2?,.S)*=1 - r O d t .  

The generalisation to R x TM of the sets XI. and X F  (as introduced in Sarlet et al 
(1984)) is a fairly straightforward matter. It was also done recently by Cariiiena and 
Martlnez (1989). Our definitions will, however, slightly differ from theirs, so this calls 
for a word of explanation. When looking at interesting vector fields and I-forms, 
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associated with a given second-order equation field r in the time-dependent case, there 
always appears to be some arbitrariness in the time component. Carifiena and Martinez 
selected the option of fixing this time component in their definition of XI. and X?. We 
prefer to keep the arbitrariness in the definition and talk about appropriate equivalence 
classes. This way, we stay closer to traditions of the past: many authors have, for 
example, in studying symmetries of r, dealt with equivalence classes of so-called 
dynamical symmetries. 

DeJinitions. For each second-order equation field r, we set: 

x, = {x E .T(R x TM)Is([r, X I )  = 01 
X r  = { @  E S*(R x TM)ITl ( S ( 4 ) )  = 4 -(r, 4) dt}. 

These sets are not submodules of vector fields (respectively 1-forms) over the ring of 
C" functions in the ordinary sense. As in the autonomous case (compare with Sarlet 
1987), they acquire their own module structure for a * product with functions f which 
is defined as follows: 

v x  E .q : f *  x =fx +r(j-)sjx) 
v4 E .I- :: : f *  4 =j4 + r(f )s( 4 1. 

"1 : .t(R x T M )  + .XI x- (x) = x + s([r, X I )  

Moreover, we can introduce projection operators: 

7 7 ,  : X*(R x T M )  + x:: 

"1 ( f 4 )  = f  * TI ( 4 )  

4 - "I (4 )  = 91 ( s ( 4  ) )  + V', 4 )  d t  

which carry over the appropriate module structures, i.e. we have, for example, 

and  similarly for vector fields. 

Locally, a vector field X E XI., when expressed in terms of the basis {r, a / a q ' ,  a l a v ' } ,  
takes the form 

whereas a 1-form cy E Xf;" can, with respect to the dual basis {dt, 8' = d q ' -  U' dt, 4' = 
d v '  - '1' dt}, be written as 

a = a , 4 ' + I ' ( a I ) 6 ' + T d t .  

It is the function 7 in both expressions which could be normalised to zero. Our  
alternative is to treat X , ,  X 2  E 3,. as being equivalent if 

x, - x2 =fr  
for some function J ;  and to say that a ,  E X ' f  is equivalent to ap E XF if 

(Y I A d t = A d t. 

Note that such an  equivalence is preserved under the * multiplication with functions. 
We will, however, occasionally be led to also impose the same equivalence relation 
on  general vector fields o r  1-forms on R x  TM and will then denote the resulting 
quotient modules as %(R x T M )  and .z*(R x T M ) .  
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Observe from the coordinate expression that the set 3,  contains the prolongations 
of vector fields on iw x M and also all dynamical symmetries of r, i.e. the vector fields 
X satisfying [ X ,  I'] = hT for some function h. It is interesting, however, to look at the 
geometrical interpretation of .TI in some more detail. From the expression of S it is 
clear that the statement X E .TI is equivalent to saying that (Lfx r, e ' )  = 0. This in turn 
means that the flow of X maps integral curves of r into curves lifted from the base 
manifold R x M. All integral curves of r are lifted curves and a dynamical symmetry 
X maps them into themselves. Therefore, a dynamical symmetry X certainly belongs 
to X I  and since (LfLX,l ]r, e ' )  is trivially zero, the same is true for Lfxr. Conversely, 
suppose that X E .TI and 2, X E .TI , i.e. we have 

(Txr, e ' )  = o (=ql ,xlr, 0') = 0. 

The second of these is equivalent to 

(9, (Txr ) ,  0 ' )  = 0 

(zxr, 9, e ' )  = wXr, 41) = 0. 

which, in view of the first property, implies 

The conclusion is that LfxT = hT for some function h, i.e. X is a dynamical symmetry 
of r. We thus have proved the following result. 

Proposition 1 .  A vector field X on R x TM is a dynamical symmetry of r if and  only 
if we have X E X I .  and TI.X E .XI-.  

The zero class in the quotient structure induced by our equivalence relation on 
vector fields consists of the multiples of r (note in passing that f r  = f * r ) :  they are 
what one calls the trivial dynamical symmetries of r. The zero class for the quotient 
structure on XF consists of multiples of dt. We will see in the next section that these 
are in fact the trivial adjoint symmetries of r. For the time being, the relevance of the 
set X,"i can be best illustrated by showing how the special case of a regular Lagrangian 
system fits nicely into this framework. To this end, we note that the defining relation 
of XF can equivalently be rewritten in the form 

i r ( d S ( 4 )  + 4 A d f )  = 0 

which reminds us of the way time-dependent Lagrangian systems are defined via the 
kernel of a Cartan 2-form. In fact, for 4 = dL, the 2-form in the above expression is 
precisely the Cartan 2-form d e L ,  so regular Lagrangian systems are those second-order 
equation fields r for which the set .XF contains an  exact l-form q5 with the property 
that dS(q5)+ 4 A d t  is a contact form, i.e. a closed 2-form of maximal rank. The local 
existence of a Lagrangian is guaranteed if we content ourselves with a closed l-form 
in XT. It is important to realise, however, that more general systems of physical interest 
easily find their place in our  construction. Specifically, Lagrange's equations for systems 
with non-conservative forces are characterised by the appearance of an  element in X F, 
which is the sum of an  exact form and a semi-basic one. In coordinates, we can, for 
example, write such a form, remembering that there is some arbitrariness in the d t  
part, as follows: 

4 = d L + Q , ( t , q ,  o ) ( d q ' - ~ ' d f )  
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where the functions Q, represent the non-conservative forces. We then have 

from which it is easily seen that the requirement 4 E S F  effectively means that 

In these more general situations, the 2-form d S (  4)  + 4 A d t  could somehow be regarded 
as a pre-Cartan form. It is therefore of interest to introduce the following notion of 
regularity. 

Dejinition. A 1-form 4 E . tF  is said to be non-degenerate if d S ( 4 )  + 4 A d t  has maximal 
rank. 

For a non-degenerate 4, d S (  4)  + 4 A d t  has a one-dimensional kernel which there- 
fore consists precisely of the multiples of r. 

3. Adjoint symmetries, first integrals and Lagrangians 

For later use, we first look in some more detail at the question of the existence (locally) 
of a Lagrangian for a given second-order equation field r. The following lemma treats 
this inverse problem question in a slightly more general way than was done by Carifiena 
and Martinez (1989). 

Lemma. Let 4 E X ?  be non-degenerate and satisfy the condition d 4  A d t  = 0. Then r 
represents a locally Lagrangian system. More specifically, locally there exists an  exact 
1-form 4' in XF, which is equivalent to 4. 

ProoJ: Putting R = d S ( 4 )  + 4 A dt, it is easy to see (for example in coordinates) that 
R vanishes on any pair of vector fields which are vertical over R x M. By the fact that 
4 belongs to X f  we have i,.R = 0 and the extra assumption on 4 means that di2 = 0. 
Hence, the Helmholtz conditions for the existence of a Lagrangian, as described, for 
example, in Crampin et a1 (1984), are satisfied. For the explicit appearance of the 
Lagrangian L, we first write 4 as 

4 = 4"'+A d t  with ( a l a r ,  4"') = 0. 

It is then clear that the assumption d 4  A d t  = 0 implies d,4"' = 0, where d ,  is a formal 
notation for the exterior derivative on TM with the variable t regarded as a parameter. 
It follows that locally 4 " ) = d , L  for some function L( t ,  q, U). Putting 

we obtain a non-degenerate element of X;': which is equivalent to the original C$ and 
is exact: 4 ' =  dL. 0 

We now come to the introduction of the notion of adjoint symmetries. The definition 
below is inspired by the previous work on  autonomous systems and by the result of 
proposition 1. 
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De$nition. An adjoint symmetry of a second-order equation field r on R x  TM is a 
1-form a E XF, whose Lie derivative with respect to r again belongs to X?. 

To justify the terminology, let us look at the adjoint symmetry requirements in 
coordinates. I f  we write a E X? as before: a = a,d' + T ( a , ) e ' +  T dt, we have 

From this we see that T1.a E ST? if and only if 

This is a system of second-order partial differential equations for the functions a,. 
Along solutions of the given differential equations (associated with r), they reduce to 
the adjoint equations (in the ordinary sense) of the linear variational equations of the 
given system. 

In the autonomous case, there was a bijective correspondence between adjoint 
symmetries and invariant 1-forms, defined by the tensor Y1.S. The situation in the 
time-dependent framework is quite similar, except that the invariant 1 -forms in question 
enjoy a further property: their contraction with r gives zero. There are various names 
around for the important class of 1-forms of this type. In the context of the geometry 
of foliations, they would be called basic forms, where basic then refers to the quotient 
structure induced by the integral curves of r. To avoid confusion with the notion of 
semi-basic forms on a tangent bundle, we introduce the following terminology. 

Definirion. A 1-form p on Iw x TM is said to be r -bas ic  if il-p = 0 and il. d p  = 0. 

Equivalently, p is r -bas i c  if ir.P = O  and 21 .p  =0,  from which it is clear that a 
r -bas ic  form is the pull back of a form on the quotient space R x  TM/T. The same 
kind of forms are called absolute integral invariants in the work of Cartan (see, e.g., 
Godbillon, 1969). 

Proposition 2. The tensor field Lfe,.S determines a bijection between the set of equivalence 
classes of adjoint symmetries and the set of r -bas i c  forms. 

Proof: Assume first that a is an  adjoint symmetry. We thus know that TI a belongs 
to XT, which by definition means that 

Zl ( S ( Y e ,  a ) )  = TI a -(r, 2, a )  d t  

or  

2 1 ( 2 1 ( S ( a ) ) - 2 1 S ( a ) ) = 2 1 a - ( ~ , ~ l a ) d t .  

This can be rewritten as 

31 ( 3 1  S ( a ) )  = 21 (21 ( S ( a ) )  - a +(r, a )  d t ) .  

Putting p = 3, S( a )  and remembering that TI S( r) = 0, we clearly have il p = 0, while 
the preceding formula, by the fact that a E XF, further implies Zl p = 0. If a ,  and cy2 
are adjoint symmetries giving rise to the same p, we have Zl S ( a ,  - cy2) = 0, which 
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means that a ,  and cy2 belong to the same equivalence class of forms. For the surjectivity, 
let p be a r -bas ic  form and  put cy = Yi S ( p ) .  We then have (r, a )  = 0 and 

2,(S(a)) = %  CS(P) )  = %  S ( P )  = cy 

p = 21 ( S ( a ) )  - S(2 i  a )  = a - S(21 cy). 

which expresses that cy E X 7 .  Furthermore, 

The invariance of p thus further implies Zi (S(z i  a ) )  = 2, a, which together with 
(r, 3, a )  = O  expresses the fact that also TI cy E,??, i.e. a is an adjoint symmetry 
of r. 0 

As announced in the previous section, multiples of d t  trivially satisfy the require- 
ments for an  adjoint symmetry. That they are indeed trivial is enhanced by the fact 
that the associated r-basic form is zero. 

An interesting property of r -bas i c  forms, which emerges from proposition 2 and 
has perhaps not been observed before is the following. Note for a start that Zi.S acts 
as the identity on the 4 '  components of a 1-form. Therefore, if  we use P I  to denote 
the 4' components of a r -bas i c  form p, it follows from proposition 2 that they are 
solutions of the adjoint variational equations mentioned above. 

The next results describe particular classes of adjoint symmetries which lead to the 
identification of a first integral or a Lagrangian for the system. Their relevance lies in 
the fact that they apply to any second-order equation field I' and  are in essence not 
more complicated than similar statements on dynamical symmetries which have been 
known for a long time, but only apply to systems for which a Lagrangian is known a 
priori. 

Proposition 3. Let a be an  adjoint symmetry of such that 2 , . S ( a )  = d F  for some 
function F. Then F is a first integral of r. Conversely, to every first integral there 
corresponds an  equivalence class of adjoint symmetries determined by the same 
relation. 

Proofi If p is a r -bas ic  form which is exact, p = d F  say, then obviously F is a first 
integral of r. Conversely, if T ( F )  =0,  p = d F  defines a r -bas ic  form. The proof now 

0 is a direct consequence of proposition 2. 

Note that the simplest representative of the class of adjoint symmetries correspond- 
ing to a given first integral F (namely the one with zero d t  part) can also be written 
as cy = q . ( d F ) .  It is this property which also remains of particular interest when F is 
not a first integral. 

Proposition 4.  Let cy be an adjoint symmetry of r such that cy = -rr,.(dF) for some 
function l? Then, T ( F )  is a Lagrangian for the given system. Conversely, if T ( F )  is 
a Lagrangian, n-,.(dF) is an  adjoint symmetry of r. 
Proofi The extra assumption on cy means that 

a = P , . S ( d F )  + S(dT(  F ) )  + (r, d F )  dt. 

Applying 2,S to both sides, we find 

YI -S(a )=dF- ( r ,dF)d t -S (dT(F) ) .  
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Since a is an  adjoint symmetry, this must be a n  invariant 1-form. Thus we have 
O=dT(F) - (T ,  d T ( F ) )  d t -2 l . (S (d I ' (F ) ) )  

which by definition means that dl'( F )  belongs to X f ,  and therefore r( F )  is a Lagrangian. 
The converse statement is a matter of reading these formulae in reverse order. 0 

As in the autonomous case, we now come to a notion of self-adjointness of a 
second-order equation field r, which will turn out to be relevant for understanding 
how the above results relate to the previously known properties of dynamical symmetries 
of Lagrangian systems. Let 4 be a non-degenerate element of XF, so that the kernel 
of the 2-form R = dS(4)  + 4 A d t  is the one-dimensional distribution spanned by r. 
By contraction, we obtain a map from vector fields to I-forms which takes the same 
value on all vector fields of the same equivalence class. A 1-form p is in the image 
of this map if and only if (r, p )  = 0. Forms p with this property are characterised by 
the fact that they can be written as ,8 = T , . S ( a )  for some a and two a giving birth to 
the same p are equivalent in the sense of section 2. We are thus led to considering 
rather the classes [A'] and [ a ]  as prime objects. In other words, we focus on the linear 
map y :  %(R x T M )  L% *(R x T M ) ,  defined by 

Y :  [XI-[.] with a = Y1.S( ixR).  
It is easy to verify that y is indeed a n  isomorphism between both quotient modules, 
the inverse map being defined by y- '  : [a]- [XI, with X any vector field satisfying 
i x R  = Y, .S(a) .  

Dejnition. A second-order equation field r is said to be self-adjoint if there exists a 
non-degenerate + E X ? ,  such that the associated map y is a bijection between 
equivalence classes of dynamical symmetries and equivalence classes of adjoint sym- 
metries. 

Proposition 5. r is self-adjoint if and  only if r is locally Lagrangian. 

ProoJ Consider the relation (for some 4 E X;): 
i x  ( d S (  4 )  + 4 A d t  ) = p. 

We then have 

21 P = i y  ( d y i  ( S ( 4 ) ) + 2 i  4 ~ d t ) +  i[i , x i ( d S ( 4 ) +  4 ~ d t )  
= i x  ( d 4  + ( i ,  d 4 )  A d t )  + i [ ,  x I ( d S ( & )  + 4 A d t ) .  

If X is a dynamical symmetry of r, the second term in this expression vanishes 
identically. By definition, r is self-adjoint if for some appropriate 4 we have 2, p = 0 
for all dynamical symmetries. It follows that is self-adjoint if and  only if 

ix  ( d 4  + ( i ,  d 4 )  A dt )  = 0 

for all dynamical symmetries X. Now, in a coordinate chart which is chosen to 
straighten out r, all coordinate vector fields are dynamical symmetries. Therefore, we 
must actually have 

d 4 + ( i ,  d 4 ) A d r = 0  
which is equivalent to d &  A d t  = 0. By the lemma at the beginning of this section we 
conclude that 4 can be replaced (locally) hy an  equivalent 4 ' ~  X f  which is exact and  

0 thus that r is locally Lagrangian. 
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Some comments are in order now. For a general second-order equation field r, 
interesting statements about adjoint symmetries cannot be translated to dual statements 
for dynamical symmetries. Proposition 5 indicates that such a translation only works 
properly for Lagrangian systems. If, then, the system is known to be Lagrangian from 
the outset, it is clear that the translation of proposition 3 is just Noether's theorem. 
It is not difficult to verify by some coordinate calculations that the translation of 
proposition 4 under the same circumstances yields a result derived by Prince concerning 
the existence of an  alternative Lagrangian (Prince 1983). At the same time, since our 
current results d o  not require the knowledge of a Lagrangian, it is clear that we d o  
have a proper generalisation here. 

4. Recovering the autonomous case 

The geometry of the odd-dimensional manifold R x TM is in many respects different 
from the geometry of TM. From a purely analytical point of view, however, an  
autonomous system of second-order differential equations is, on the surface, an  obvious 
special case of a non-autonomous one. It is therefore of some interest to have a look 
at  the way the present formalism reduces to the one on TM when we are dealing 
with autonomous differential equations. For that purpose, it suffices to see what 
happens with the sets 3T and X I .  

It is clear that we can write 

S = So - A 0 d f with So = a / a d O d q '  A = V I  a / a d  
For an  autonomous system it further makes sense to decompose r as 

r = a / a t  + To. 

Let us then start by looking, within the present formalism, at elements 4 of X r  which 
satisfy Td,#,4 = 0. We then have 

~ I ( S ( ~ ) ) = T , , , ( S " ( ~ ) ) - ~ ' , " ( ( A ,  4 ) )  dr  

and  it readily follows that the defining relation of X f  splits into two parts. The first 
one, obtained by taking the contraction with alar,  is 

21,,(4-d(A, 4 ) ) = 0  

and subtracting this from the full relation leads to 

21 (,(SO(d)) = 4. 
At this stage 4 is, in principle, still allowed to have a d r  term, but one easily sees that 
such a term does not contribute to any of these conditions and  may thus safely be 
omitted. This being done, the second condition is precisely the defining relation of 
X T o  on TM, while the first one is a consequence of it (see proposition 5.1 in Sarlet et 
a1 (1984)). 

The situation is slightly different for the vector fields. Suppose that we similarly 
start looking at elements X of 3,  which satisfy 2'c7,,3,X = 0. The defining relation of 
3, then becomes 

0 = S([r, XI) = So([r,, XI) -m, XI, dr)A. 
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If we want X to be an  object which properly lives on TM, the second term on the 
right-hand side will disappear and we are back to the definition of X,,, on TM. In 
principle, however, we could allow for vector fields X with a non-zero a l a r  term and  
seemingly have a wider range of possibilities at our disposal. This should not come 
as a surprise, because this kind of situation is well known in the study of symmetries. 
As a matter of fact, even if the given system is autonomous, one can still envisage 
symmetry transformations which change the parametrisation, i.e. look at dynamical 
symmetries rather than strict symmetries. This is in effect what is usually done in 
calculating all point symmetries of a given second-order system. However, we also 
know about the equivalence relation by which every local result concerning a vector 
field with non-vanishing a l a r  term can be translated to a corresponding result for a 
vector field without such a term. This means that as long as one restricts all coefficients 
of X (or  in fact any other object of interest) to be time-independent, nothing is lost 
by working in the proper TM configuration. Needless to say, it can also be of interest, 
even for autonomous systems, to work in the E4 x TM configuration, because for 
example, autonomous differential equations may well have time-dependent first 
integrals. 

5. Illustrative examples 

Let us start with some comments concerning a well established subject: the search for 
symmetries of differential equations and its automatisation via a suitable computer 
algebra package. Limiting ourselves to the case of second-order O D E  of the form 
q'  = A'(  r, q, q ) ,  a large part of the existing literature on symmetries is restricted to what 
we call point symmetries, i.e. dynamical symmetries of r which are prolongations of 
a vector field Xi ' '  = r ( t ,  q ) a / d t  + t'(t, q)a /aq '  on iw x M. The search for solutions will, 
most of the time, be conducted along the lines of Lie's original theory and will 
accordingly involve the computation of the second prolongation of X'"  (see, e.g., 
Olver (1986) as a general reference). As far as we know, the existing computer algebra 
implementations of the search for symmetries follow the same pattern and  are always 
restricted to the case of point symmetries (this is afterall not surprising as these packages 
are equally applicable to the much wider class of PDE) .  

Within the present context of second-order ODE an  alternative formulation of the 
problem of constructing symmetries is simply to search for solutions p '  of the system 
of equations 

The case of point symmetries corresponds to solutions of the restricted form 

p '  = 5 ' ( t ,  4 )  - U ' d t ,  9 ) .  

In most applications, the given functions A '  will have a polynomial dependence on 
the velocity variables U'. It should therefore be just as straightforward (though possibly 
much more tedious) to search for dynamical symmetries starting from a more general 
ansatz for the functions p' ,  namely a polynomial in the v '  of arbitrary preassigned 
degree. In addition, it must be fairly simple to extend existing computer algebra 
packages for that purpose. 
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Now for the present paper, where the study of adjoint symmetries is the central 
theme, the program for applications is of course quite similar. We are interested in 
solutions of the system of equations 

Here again, the search for particular solutions can be gradually stepped up, from 
solutions depending on t and q only, to polynomials in the U' of any degree. It is of 
some interest to have another look here at the duality between symmetries and adjoint 
symmetries which exists for Lagrangian systems. It is easy to verify that the essential 
part of the map y for the case of a regular Lagrangian system is determined by the 
relation 

In most standard applications, L will be quadratic in the velocities, so that solutions 
a, of the adjoint equations will have the same polynomial structure as corresponding 
solutions p1 of the symmetry conditions. This means in particular that in order to 
cover all cases of point symmetries in the dual picture, solutions for a, must also be 
allowed to depend linearly on the U'. When no Lagrangian for the system is known 
a priori, we have learned that interesting things happen whenever an adjoint symmetry 
a matches the supplementary requirement a = .ir,.(dF). Essentially, this requires the 
coefficients a, to be of the form a, = a F / a v '  for some function F. 

It is to be expected that interesting functions F may well depend quadratically on 
the velocities, so that also from this point of view there is an incentive to push the 
search for solutions of the adjoint equations at least to the first-degree level. Work 
concerning the development of computer algebra procedures along these lines is under 
way. Meanwhile, the examples which follow were computed by hand. 

As a first example, consider the Emden equation 

Using a to denote the coefficient of dv of an adjoint symmetry a, the equation to be 
solved becomes 

Y'(a)+r - -a  +5aq4=0.  (3 
One readily verifies that there are no solutions depending on t and q only. For the 
next step in a systematic search we require a to be of the form a ( t ,  q, U )  = 
a l ( t ,  q)v+a,(t,  q) .  The coefficients of different powers of U then give rise to the 
following system of equations: 

a2ao aa, aa, 2 2 aa, 4 
-- 2 q s - -  q5  -+? au--  -+- q 5 a l  + 5 q 4 a o =  0. 
at' a t  aq t -  t a t  t 
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It is found to have the unique solution 

a=2 t 'u+ t2q .  

The corresponding adjoint symmetry appears to match the conditions of proposition 
3 and produces in this way the well known integral 

F = t3 (  u 2 + f q 6 )  + t2qu. 

Consider next another simple one-degree-of-freedom system, determined by 

This time, the adjoint symmetry condition has a solution depending on t and q only, 
namely 

a(  t, q )  = eq". 

Again it gives rise to a first integral, having the form 

F = eq'lu. 

A Lagrangian for this equation is not readily available, so it is interesting to compare 
the situation here with information which can be gathered from the search for sym- 
metries. The equation under consideration is discussed in Olver (1986) as example 
2.58. It has the point symmetry t a / a t  + q d / d q .  In adapted coordinates which straighten 
out this symmetry vector field, one is reduced to a first-order differential equation of 
Riccati type. It appears that it is only at this secondary stage that a symmetry of the 
reduced equation produces a first integral equivalent to the function F above. 

At this point, it is worthwhile mentioning the following general property of adjoint 
symmetries, which can very easily be verified. If a is an adjoint symmetry of r and f 
is a first integral, then fa is another adjoint symmetry. For the present example, we 
conclude that a = e2q'rv determines an adjoint symmetry of degree 1 in U (it appears 
to be the only one). Obviously, this new adjoint symmetry will also match the 
requirements of proposition 3, but the corresponding first integral will be a function 
of the original one ($F2 in this case). Note finally that division of the original a by 
F shows that a = l / u  also defines an adjoint symmetry. This remark illustrates that it 
may be of interest in certain cases to extend the search for adjoint symmetries from 
polynomial to rational expressions in the velocities. 

Referring to the discussion at the end of the preceding section, we now want to 
treat an example of an autonomous system within the time-dependent framework. 
Consider the following three-degree-of-freedom system: 

q ' =  - q 1 4 3  q 2  = +g3 q3 = q l q l  + $ 4 2 .  

The computations of course become quite labourious here, so we restrict ourselves to 
a listing of the results obtained to first degree in the velocities. There are four adjoint 
symmetries a"), two of which have leading coefficients a;') which are independent of 
the velocities. As the corresponding r-basic forms p'" have the same dv'  coefficients, 
it is not necessary to list both expressions. Three of the r-basic forms are given by 

p"' = -du3 + 4' dq'  + q2 dq2 

/3'2' = 4' do2 - q2 dv' + u2 dq'  - U' dq2 

p ( 3 ) =  U' du '+  v 2  du2+ u3 du'. 
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It is clear that these are exact forms; they give rise to the first integrals 

F ,  = ; [ ( q ' ) 2 + ( q 2 ) 2 ] - u 7  

F , = ; [ ( U ' ) * + ( u ' ) ' + ( U ' ) ' ] .  

a;'+' = q' + tvJ.  

F2= qlU'-q 'v '  

For the fourth adjoint symmetry, we have 

The first three a"' obviously would have been found also in the purely autonomous 
framework on TM, but a('+' is an extra result obtained via the time-dependent setup 
on R X  TM. The r -bas ic  form PI4' is not exact. However, it is clear that we have 
c ~ ; ~ ' = a F ~ / d u ~  (meaning that a('+' = r , . (dF4) ) ,  with 

F4 = it[( U')? + (U')'+ ( U ' ) ' ]  + q'u' 

Hence, in agreement with proposition 4, T(FJ  is a Lagrangian for the given system. 
Dividing by 3 and subtracting a suitable total time derivative, this Lagrangian takes 
the standard form 

L = f[( U')'+ (U')* + ( U')?] - f [ (  4')' + (q')']u'. 

With the help of this Lagrangian it is again possible, if desired, to translate the above 
results to the context of symmetries. The adjoint symmetries a"' then all turn out to 
correspond to point symmetries of r. 
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